Jedes Virus, verändert sich unaufhörlich – so sind auch in der aktuellen Pandemie unterschiedlichste SARS-CoV-2-Mutationen die Folge, auf welche Impfstoffhersteller bislang nur rückwirkend reagieren konnten.
Grazer ForscherInnen des Bioinformatik-Unternehmens Innophore, des Austrian Centre of Industrial Biotechnology (acib) und der Universität Graz ist es nun gelungen, mithilfe moderner AI-basierter Screeningmethoden und virtueller Szenarien die Relevanz existierender, aber auch hypothetischer, zukünftiger Corona-Varianten zu studieren und vorherzusagen.
Dies erlaubt es Impfstoffherstellern, existierende Vakzine schneller zu optimieren, damit diese auch gegen unterschiedlichste Mutationen breit wirksam sind. Mittelfristiges Ziel der ForscherInnen ist, gemeinsam mit den Impfstoffherstellern frühzeitiger die Kontrolle über Epidemien zu erlangen.
Mutation von Viren
Sämtliche biologischen Systeme, darunter Mensch, Tier und Pflanze, verändern sich kontinuierlich und entwickeln sich somit ständig weiter. Dieser Evolution unterliegen auch Viren, darunter das Corona-Virus. Wie andere Viren, schleust es sich in menschliche Zellen ein, wo es seine Erbinformationen einbringt und sich vermehrt. In diesem Prozess wird das virale Genom kopiert – wobei immer wieder kleine, zufällige Veränderungen bzw. Fehler passieren: Das Virus mutiert.
Manche Mutationen verschaffen dem Virus Vorteile wie eine bessere Anpassung an veränderte Umweltbedingungen, womit oft eine schnellere Verbreitung einhergeht oder ein effizienteres Eindringen in die Wirtszellen und damit eine möglicherweise höhere Ansteckungsrate.
Wie schnell neue Varianten sichtbar werden, hängt von der Art des Virus ab, aber auch von seiner Verbreitung. Je weiter ein Virus verbreitet ist, desto höher die Wahrscheinlichkeit, dass sich evolutionär begünstigte Mutationen durchsetzen.
Christian Gruber, CEO des Grazer Bioinformatik und AI-Unternehmens Innophore
(AI)-basierte Screening-Methode zur Einschätzung von SARS-CoV-2-Mutationen
Bereits seit Jänner 2020 forschen Innophore, das Austrian Centre of Industrial Biotechnology (acib) und das Institut für Molekulare Biowissenschaften der Universität Graz gemeinsam an den entstehenden SARS-CoV-2-Mutationen und schätzen deren Relevanz und Gefahr mit modernen, Artificial Intelligence (AI)-basierten Screening-Methoden ein.
„Dazu haben wir anfangs den strukturellen Aufbau des Virus erforscht, um zu verstehen, wie und an welcher Stelle es sich verändert bzw. auch um vorherzusagen, wie es sich in Zukunft verändern könnte. Zur selben Zeit haben wir in Zusammenarbeit mit internationalen Partnern begonnen, kontinuierlich globale Sequenzdaten zu analysieren. Das war schon zu Beginn bei unseren Arbeiten mit dem Chinese Center for Desease Control and Prevention und später mit der Harvard Medical School und Google relevant und musste zum Teil bei Wirkstoffsuchen berücksichtigt werden“, sagt Gruber.
Bis heute wurden global mehr als eine halbe Million Sequenzierungen von SARS-Cov-2 Genomen durchgeführt. Mit diesem Datensatz, der ständig um neue Daten erweitert werden muss, können die Wissenschaftler seit Beginn der Pandemie die Ausbreitung und Veränderung des Virus beobachten.
Gruber: „Nun wissen wir zum Beispiel, dass Veränderungen im gesamten Genom des Virus vorkommen und dass diese mitunter direkte Auswirkungen auf Ansteckung und Übertragung haben. Das zeigt sich aktuell bei der B.1.1.7 Variante, entdeckt in Großbritannien, gefolgt von der B.1.351 Variante aus Südafrika und der brasilianischen Variante B.1.1.28 P.1.“
Mutationen durch Computermodellierung prognostizieren
Um abschätzen zu können, wie sich diese und zukünftig SARS-CoV-2-Mutationen ausbreiten werden, setzen die ForscherInnen Computermodelle und AI ein.
„Basierend auf den global nun vermehrt durchgeführten Sequenzierungen können wir durch AI und Modellierungsmethoden virtuell verschiedene Szenarien berechnen. Indem wir unsere Daten mit klinischen und im Labor durchgeführten Beobachtungen abgleichen, können wir so die Vorhersagemodelle zusätzlich verbessern. Mit anderen Worten versetzen wir uns in die Lage des Virus: Wie reagiert es, welche Mutationen kann es ausbilden? Dadurch können die Veränderungen und die Relevanz existierender, aber auch hypothetischer Corona-Varianten prognostiziert und auf atomarer Ebene studiert werden“, sagt Gruber.
Mithilfe der Modelle können die Forscher in Supercomputerexperimenten die Gefährlichkeit von Virusmutationen einschätzen, noch bevor sich das Virus verändert hat. Ein Meilenstein in der weltweiten Coronaforschung. Gruber: „Damit werden wir dem Virus einen Schritt voraus sein.“
Die Wirkung von Impfstoffen verstärken
Wie bedeutsam diese Arbeit ist, zeigt eine eben in Scientific Reports, einem renommierten Magazin der Nature-Gruppe, erschienene Studie der Grazer ForscherInnen. Darin werden momentan noch weniger verbreitete, strukturell auffällige SARS-CoV-2-Mutationen – an der Stelle Serin 477 – beschrieben, die stärker an menschliche Zellrezeptoren binden und dadurch hoch relevant werden könnten.
„Die erstmals in Wien aufgetretene Variante S477G findet man nun in acht Ländern. Mit der S477N-Virusmutation haben sich, aktuellen Zahlen zufolge, über 27.000 Menschen weltweit infiziert“, zitiert Gruber aus dem aktuellen Paper.
Die von Innophore entwickelten Methoden erlauben es Impfstoffherstellern, existierende Vakzine schneller zu optimieren, damit diese auch gegen aktuelle Virusmutationen wie S477N oder S477G wirksam sind.
BioNTech ist in einer aktuellen Veröffentlichung bereits auf die Arbeit der Grazer ForscherInnen aufmerksam geworden und hat die Daten zu den beiden SARS-CoV-2-Mutationen S477N und S477G bestätigt sowie auf die stärkere Bindung der Varianten an menschliche Zellen hingewiesen. Dies ist eine wichtige Grundlage, um für Vakzine entsprechende Anpassungen zu konzipieren.
„Solche Ergebnisse stellen insofern eine Riesenchance für alle Impfstoffhersteller dar, da diese Modelle dazu beitragen, dass die Industrie Impfstofflinien vorbereiten und entwickeln kann, die auch noch unbekannte und womöglich gefährlichere Mutationen abfedern können“, sagt Gruber und erklärt, warum Zukunftsprognosen gerade in der Impfstoffentwicklung wichtig sind: „Anders als ein Medikament, mit der eine bereits bestehende Erkrankung behandelt wird, wirken Impfstoffe präventiv, also noch bevor es zu einer Erkrankung kommt. Ab dem Zeitpunkt der Impfung können keine Anpassungen mehr durchgeführt werden. Deshalb sind Vorhersagen möglicher Virusvarianten bei der Herstellung von Impfstoffen wichtig.“
„Virale Wettervorhersage“ für SARS-CoV-2-Mutationen
Die Erkenntnisse der Grazer ForscherInnen können nicht nur entscheidend zur Entwicklung der aktuellen Coronapandemie beitragen, sondern bieten auch Hoffnung in der Bekämpfung zukünftiger Pandemien: „Ähnlich wie bei einer Wettervorhersage schätzen wir anhand bestehender Modellierungsdaten ein, wie die Situation morgen oder übermorgen sein könnte.
Auch die Virusforschung prognostiziert etwa bei der Entwicklung von Grippeimpfstoffen, welche Influenzastämme sich epidemisch ausbreiten werden und stellt anhand der vorliegenden Daten entsprechende Impfstoffe her, die gegen diese Varianten wirken.
„Zwar ist die Situation bei SARS-CoV-2 eine andere, jedoch besitzen wir aus bioinformatischer Sicht weit mehr Daten zu SARS-CoV-2 als zur Grippe“, gibt Gruber Einblick und Ausblick zugleich: „Damit haben wir in Zukunft höhere Chancen und umfassendere Möglichkeiten, das ‚Viruswetter‘ vorherzusagen, um früher darauf reagieren zu können.“
Ziel: frühzeitige Kontrolle über Epidemien
Mittelfristiges Ziel der ForscherInnen ist es, gemeinsam mit den großen Impfstoffherstellern frühzeitiger die Kontrolle über Epidemien zu erlangen – von der Prognose über die Prävention bis hin zu einem präemptiven Reaktionssystem.
Gruber: „Die enge Zusammenarbeit von Grundlagenforschung und Industrie hat uns in weniger als einem Jahr zu Lösungen geführt, die eine aktive Epidemiebekämpfung ermöglichen.“
Jetzt ist es nötig, diese Kooperationen zu institutionalisieren und auf Dauer auszulegen, um global gegen Viruserkrankungen vorbereitet zu sein. Denn dass Epidemien auch weiterhin unser Leben begleiten werden, ist laut Meinung der ForscherInnen unbestritten.