ETH-Forschende konnten zeigen, warum biologische Zellen erstaunlich vielfältige Formen annehmen können: Dies hat mit der Anzahl und Stärke lokaler Kräften zu tun, die von Innen auf die Zellmembran wirken. Die Erkenntnis trägt dazu bei, bessere Modellsysteme und künstliche Zellen zu entwickeln.
Dornartige Fortsätze, lange Geisseln oder Fasern, unförmige Aussackungen: Biologische Zellen können fast beliebige komplexe Membranstrukturen ausbilden. Mithilfe solcher Strukturen nehmen die Zellen äußere Reize wahr, treten mit anderen Zellen in Kontakt oder erkunden ihre Umgebung.
Damit solche vielfältigen Formen zustande kommen, sind lokale Kräfte nötig, die von Innen auf die Zellmembran wirken. In Zellen üben etwa Bestandteile des Zellskeletts wie Aktinfilamente oder Mikrotubuli solche Kräfte auf die Membran aus. Allerdings können auch krankmachende Bakterien, die in Zellen eindringen, ähnliche Phänomene erzeugen. Bekannt ist das etwa von Listerien, den Erregern von Darmentzündungen. Indem sie die Membran deformieren, würden es die Bakterien schließlich auch schaffen, gesunde Nachbarzellen zu infizieren.
Faszinierende Verformbarkeit
Für Wissenschaftler faszinierend ist zudem die mechanische Reaktion solcher Lipidmembranen, da sie einerseits eine stabile Hülle bildet, die die Wechselwirkungen einer Zelle mit der Umgebung reguliert, andererseits aber auch verformbar ist. Die Frage nach den speziellen mechanischen Eigenschaften solcher Membranen ist sowohl von praktischem als auch fundamentalem Interesse, insbesondere aus materialwissenschaftlicher Sicht.
Um solche Vorgänge untersuchen zu können, verwenden Forschende seit Längerem große Vesikel, die von einer Doppellipid-Membran umgeben sind. Ein einfaches überschaubares System also, welches biologische Zellen imitiert. Nicht gelungen war es bisher, aus dem Innern solcher Vesikel kontrolliert Kräfte wirken zu lassen, welche zu den in natürlichen Zellen beobachteten Strukturen führen.
„Es ist uns nicht nur gelungen, ein künstliches, stark vereinfachtes System zu schaffen, welches Zellen sehr gut imitiert“, sagt Rao Vutukuri, Marie-Curie-Stipendiat in Vermants Gruppe. „Dank diesem Ansatz konnten wir auch die Materialphysik und Mechanik von Membranen aus Doppellipidschichten klären.“ Die entsprechende Studie ist aktuell in der Fachzeitschrit Nature erschienen. Vutukuri ist Erstautor.
In Zusammenarbeit mit Forschenden des Forschungszentrums Jülich (D) kombinierten die ETH-Forschenden ihre Experimente überdies mit Computersimulationen, um den genauen, den Membran-Deformationen zugrundeliegenden Mechanismus besser zu verstehen. Damit konnten sie aufzeigen, wie die selbstangetriebenen Partikel eine Vielzahl von ungewöhnlichen Formen hervorrufen. Beobachtungen aus den Experimenten und Simulationen stimmten gut überein.
Partikel triggern Formenvielfalt
Beide zeigen: Die Partikel prallen zunächst an zufälligen Punkten auf die Membran der Vesikel – und lösen dabei ähnliche Effekte aus wie die Listerien in einer echten Zelle. Der Punkt, wo ein Partikel aufgeschlägt, verformt die Membran lokal, was weitere Partikel anzieht. Die Membran beult sich immer stärker aus, bildet bald dornartige Fortsätze oder Geisseln.
Ob sich Vesikel verformen, hängt jedoch davon ab, wie stark sie mit Partikeln gefüllt sind. „Weniger ist in dem Fall mehr“, sagt Vutukuri. Je mehr Partikel die Vesikel enthielten, desto weniger reagierte die Membran auf die von den Partikeln ausgeübten punktuellen Kräfte. Eine Füllmenge von drei Prozent war hingegen optimal und führte zur Bildung der verrücktesten Membranstrukturen. Diese Deformationen können sich auch wieder zurückbilden. „Das System ist sehr dynamisch“, sagt Vutukuri. „Die Formenübergänge lassen sich nun sogar voraussagen.“
„Auch wenn unsere Vesikel die Komplexität einer echten Zellen nicht ganz abbilden, die Art und Weise, wie eine sich selbstorganisierende Struktur wie die Membran auf große, lokale Deformationen reagiert, ist faszinierend. Ihre Reaktion auf aktive Kräfte wurde bislang unterschätzt“, sagt ETH-Professor Vermant. Die Studie, so sind die ETH-Forscher überzeugt, ebnet den Weg zur Entwicklung neuer künstlicher Membransysteme, künstlicher Zellen oder winziger Roboter aus weichen Materialien.
Originalpublikation:
Vutukuri HR, et al. „Active particles induce large shape deformations in giant lipid vesicles“. Nature, 9/2020;
DOI: 10.1038/s41586-020-2730-x